SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY :: PUTTUR (AUTONOMOUS)
 Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: NUMERICAL METHODS ANDTRANSFORMS (20HS0834)
Branches: B.Tech-ECE Year \& Sem: II-B.Tech \& I-Sem

Regulation: R20

UNIT -I

NUMERICAL SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS\& INTERPOLATION

1	a) Define Algebraic equation and Transcendental equation.						[L1][CO2]	[4M]
	b) Find a positive root of the equation $x^{3}-x-1=0$ by Bisection method.						[L3][CO2]	[8M]
2	a)What is the algorithm for the bisection method.						[L1][CO2]	[4M]
	b) Find real root of the equation $3 x=e^{x}$ by Bisection method.						[L3][CO1]	[8M]
3	a) Describe the formula for square root of a number by Newton - Raphson formula.						[L2][CO2]	[2M]
	b) Find out the square root of 25 given $x_{0}=2.0, x_{1}=7.0$ using Bisection method.						[L3][CO2]	[10M]
4	a) State Newton - Raphson formula for solution of polynomial and transcendental equations.						[L1][CO2]	[2M]
	b) Estimate a real root of the equation $x e^{x}-\cos x=0$ by using Newton - Raphson method.						[L4][CO1]	[10M]
5	Using Newton-Raphson method (i) Find square root of 28 (ii) Find cube root of 15 .						[L3][CO2]	[12M]
6	a) Using Newton-Raphson method, find reciprocal of 12.						[L3][CO2]	[6M]
	b) Find a real root of theequation $x \tan x+1=0$ using Newton - Raphson method.						[L3][CO1]	[6M]
7	a) Write formula for Regula-falsi method.						[L2][CO1]	[2M]
	b) Predict a real root of the equation $x e^{x}=2$ by using Regula-falsi method.						[L2][CO1]	[10M]
8	Find the root of the equation $x \log _{10}(x)=1.2$ using False position method.						[L3][CO1]	[12M]
9	a) Write the formula for Newton's forward interpolation.						[L1][CO1]	[2M]
	b) From the following table values of x and $\mathrm{y}=\tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$.						[L5][CO1]	[10M]
	x	0.10	0.15	0.20	0.25	0.30		
	y	0.1003	0.1511	0.2027	0.2553	0.3093		
10	a)Apply Newton's forward interpolation formula and the given table of values						[L3][CO1]	[6M]
	x	1.1	1.3	1.5	1.7	1.9		
	$\mathrm{f}(\mathrm{x})$	0.21	0.69	1.25	1.89	2.61		
	Obtain the value of $f(x)$ when $x=1.4$.							
	b)Use Newton's backward interpolation formula to find $f(32)$ given $f(25)=0.2707$,$f(30)=0.3027, f(35)=0.3386, f(40)=0.3794$						[L3][CO1]	[6M]

UNIT -II

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS\& NUMERICAL INTEGRATION

1	a) State Taylor's series formula for first order differential equation.	[L1][CO3]	[2M]
	b) Tabulate $y(0.1)$ and $y(0.2)$ using Taylor's series method given that $y^{1}=y^{2}+x$ and $y(0)=1$	[L1][CO3]	[10M]
2	Evaluate by Taylor's series method, find an approximate value of y at $\mathrm{x}=0.1$ and 0.2 for the D.E $y^{11}+x y=0 ; y(0)=1, y^{1}(0)=1 / 2$.	[L5][CO3]	[12M]
3	a) Solve $y^{1}=x+y$, given $\mathrm{y}(1)=0$ find $\mathrm{y}(1.1)$ and $\mathrm{y}(1.2)$ by Taylor's series method.	[L3][CO3]	[6M]
	b) Solve by Euler's method $\frac{d y}{d x}=\frac{2 y}{x}$ given $\mathrm{y}(1)=2$ and find $\mathrm{y}(2)$	[L3][CO3]	[6M]
4	a) State Euler's formula for differential equation.	[L1][CO3]	[2M]
	b)Using Euler's method, find an approximate value of y corresponding to $x=0.2$ given that $\frac{d y}{d x}=x+y$ and $y=1$ when $x=0$ taking step size $h=0.1$	[L3][CO3]	[10M]
5	Using modified Euler's method find $y(0.2)$ and $y(0.4)$, given $y^{1}=y+e^{x}$, $y(0)=0$	[L3][CO3]	[12M]
6	a) Solve by Euler's method $y^{\prime}=y^{2}+x, y(0)=1$.and find $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$	[L3][CO3]	[6M]
	b) Using Runge - Kutta method of fourth order, compute $\mathrm{y}(0.2)$ from $y^{1}=x y \mathrm{y}(0)=1$, taking $\mathrm{h}=0.2$	[L3][CO3]	[6M]
7	Using R-K method of $4^{\text {th }}$ order, solve $\frac{d y}{d x}=x^{2}-y, \mathrm{y}(0)=1$. Find $y(0.1)$ and $y(0.2)$.	[L3][CO3]	[12M]
8	Using R-K method of $4^{\text {th }}$ order find $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$ given that $\frac{d y}{d x}=x+y$, $y(0)=1$.	[L3][CO3]	[12M]
9	Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ by (i) By Trapezoidal rule and Simpson's $\frac{1}{3}$ rule. (ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.	[L5][CO3]	[12M]
10	a) Evaluate $\int_{0}^{4} e^{x} d x$ by Simpson's $\frac{\mathbf{3}}{\mathbf{8}}$ rule with 12 sub divisions.	[L5][CO3]	[6M]
	b) Evaluate $\int_{0}^{\pi / 2} \sin x d x$ using Trapezoidal rule, Simpson's $\frac{1}{3}$ rule and compare with exact value.	[L5][CO3]	[6M]

UNIT -III
 LAPLACE TRANSFORMS

1	a) What is the Linear Property of Laplace Transform	[L1][CO4]	[2M]
	b) Find the Laplace transform of $f(t)=e^{3 t}-2 e^{-2 t}+\sin 2 t+\cos 3 t+\sinh 3 t-2 \cosh 4 t+9 .$	[L3][CO4]	[4M]
	c) Find the Laplace transform of $f(t)=\cosh$ at $\sin b t$	[L3][CO4]	[6M]
2	a) Find the Laplace transform of $f(t)=\left(\sqrt{t}+\frac{1}{\sqrt{t}}\right)^{3}$.	[L3][CO4]	[6M]
	b) State First Shifting Theorem	[L1][CO4]	[2M]
	c) Find the Laplace transform of $e^{4 t} \sin 2 t$ cost.	[L3][CO4]	[4M]
3	a) State Change of Scale Property	[L1][CO4]	[2M]
	b) Find the Laplace transform of $f(t)=$ cost. $\cos 2 t \cdot \cos 3 t$	[L3][CO4]	[6M]
	c) Find $L\left\{e^{-3 t} \sinh 3 t\right\}$	[L3][CO4]	[4M]
4	a) Find the Laplace transform of $t^{2} e^{2 t} \sin 3 t$.	[L3][CO4]	[6M]
	b) Find the Laplace transform of $\frac{1-\cos a t}{t}$	[L3][CO4]	[6M]
5	a) Find the Laplace transform of $\int_{0}^{t} e^{-t} \cos t d t$.	[L3][CO4]	[6M]
	b) Find the Laplace transform of $e^{-4 t} \int_{0}^{t} \frac{\sin 3 t}{t} d t$.	[L3][CO4]	[6M]
6	a) Show that $\int_{0}^{\infty} t^{2} e^{-4 t} \cdot \sin 2 t d t=\frac{11}{500}$, Using Laplace transform.	[L1][CO4]	[6M]
	b) Using Laplace transform, evaluate $\int_{0}^{\infty} \frac{\cos a t-\cos b t}{t} d t$.	[L3][CO4]	[6M]
7	a) Find $L^{-1}\left\{\frac{3 s-2}{s^{2}-4 s+20}\right\}$ by using first shifting theorem.	[L3][CO4]	[6M]
	b) Find $\mathrm{L}^{-1}\left\{\log \left(\frac{s-\mathrm{a}}{\text { s-b }}\right)\right\}$	[L3][CO4]	[6M]
8	a) State Convolution Theorem	[L1][CO4]	[2M]
	b) Find $L^{-1}\left\{\frac{1}{\left(s^{2}+5^{2}\right)^{2}}\right\}$, using Convolution theorem.	[L3][CO4]	[4M]
	c) Find $L^{-1}\left\{\frac{s^{2}}{\left(s^{2}+4\right)\left(s^{2}+25\right)}\right\}$, using Convolution theorem.	[L3][CO4]	[6M]
9	a) Find the Inverse Laplace transform of $\frac{1}{s\left(s^{2}+a^{2}\right)}$	[L3][CO4]	[6M]
	b) Find $L^{-1}\left\{s \log \left(\frac{s-1}{s+1}\right)\right\}$	[L3][CO4]	[6M]

$\mathbf{1 0}$	a) Using Convolution theorem, Find $L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$	$[\mathrm{L} 3][\mathrm{CO} 4]$	$[6 \mathbf{M}]$
	b) Using Convolution theorem, Find $L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}$	$[\mathrm{L} 3][\mathrm{CO} 4]$	$[6 \mathbf{M}]$

UNIT -IV

APPLICATIONS OF LAPLACE TRANSFORMS\&FOURIER SERIES

1 	a) Using Laplace transform method to solve $y^{1}-y=t, y(0)=1$	[L3][CO5]	[6M]
	b) Solve the D.E. $\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+x=3 t e^{-t}$ usingLaplace Transform given that $x(0)=4 ; \frac{d x}{d t}=0 . a t, t=0$	[L3][CO5]	[6M]
2	Using Laplace transform method to solve $y^{11}-3 y^{1}+2 y=4 t+e^{3 t}$ where $y(0)=1, y^{1}(0)=1$	[L6][CO5]	[12M]
3	a) Express Fourier Series with Coefficients in the interval ($0,2 \pi$).	[L2][CO5]	[2M]
	b) Obtain the Fourier series expansion of $\mathrm{f}(\mathrm{x})=x^{2}$ in the interval $(0,2 \pi)$.	[L3][CO5]	[4M]
	c) Obtain the Fourier series expansion of $\mathrm{f}(\mathrm{x})=\left(x-x^{2}\right)$ in the interval $[-\pi, \pi]$. Hence show that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}----=\frac{\pi^{2}}{12}$.	[L3][CO5]	[6M]
4	a) Obtain the Fourier series expansion of $f(x)=(\pi-x)^{2}$ in $0<x<2 \pi$ and deduce that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}----=\frac{\pi^{2}}{6}$.	[L3][CO5]	[6M]
	b) Find the Fourier series for the function $f(x)=x$; in $-\pi<\mathrm{x}<\pi$.	[L1][CO5]	[6M]
5	Find a Fourier series to represent the function $f(x)=e^{x}$ for $-\pi<x<\pi$ and hence derive a series for $\frac{\pi}{\operatorname{sinhr} \pi}$.	[L1][CO5]	[12M]
6	Find the Fourier series to represent the function $f(x)=x^{2}$ for $-\pi<x<\pi$ and hence show that (i) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}----=\frac{\pi^{2}}{12}$. (ii) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}----=\frac{\pi^{2}}{6}$. (iii) $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}----=\frac{\pi^{2}}{8}$	[L1][CO5]	[12M]
7	a) If $f(x)=\|\sin x\|$, expand $\mathrm{f}(\mathrm{x})$ as a Fourier series in the interval $(-\pi, \pi)$	[L2][CO5]	[6M]
	b) Write the formula for Half Range Fourier Cosine Series	[L1][CO5]	[2M]
	c) Find the half range cosine series for $f(x)=x$ in the interval $0 \leq x \leq \pi$	[L1][CO5]	[4M]
8	Expand the function $f(x)=\|x\|$ in $-\pi<x<\pi$ as a Fourier series and deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}----=\frac{\pi^{2}}{8}$	[L2][CO5]	[12M]
9	a) Expand $f(x)=e^{-x}$ as a fourier series in the interval ($-1,1$).	[L2][CO5]	[6M]
	b) Expand $f(x)=\|x\|$ as a fourier series in the interval (-2,2).	[L2][CO5]	[6M]

Q.P. Code: 20HS0834

10

a) Write the formula for Half Range Fourier Sine Series	$[\mathrm{L} 1][\mathrm{CO}]$	$[\mathbf{2 M}]$
b) Find the half range sine series expansion of $f(x)=x^{2}$ when $0<x<4$.	$[\mathrm{L} 1][\mathrm{CO}]]$	$[\mathbf{4 M}]$
c) Find the half range cosine series expansion of $f(x)=x(2-x)$ in $0 \leq x \leq 2$.	$[\mathrm{L} 1][\mathrm{CO}]$	$[\mathbf{6 M}]$

UNIT - V

FOURIER TRANSFORMS

1	a) State Fourier integral theorem	[L1][CO6]	[2M]
	b) Using Fourier integral theorem, Show that $e^{-a x}-e^{-b x}=\frac{2\left(b^{2}-a^{2}\right)}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x d \lambda}{\left(\lambda^{2}+a^{2}\right)\left(\lambda^{2}+b^{2}\right)}, a, b>0$	[L3][CO6]	[10M]
2	Find the Fourier transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}1 ;\|x\|<a \\ 0,\|x\|>a\end{array}\right\}$ and hence evaluate i) $\int_{-\infty}^{\infty} \frac{\operatorname{sinap} \cos p x}{p} d p$ ii) $\int_{-\infty}^{\infty} \frac{\sin p}{p} d p$ iii) $\int_{0}^{\infty} \frac{\sin p}{p} d p$.	[L1][CO6]	[12M]
3	Find the Fourier transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}a^{2}-x^{2},\|x\|<a \\ 0,\|x\|>a>0\end{array}\right\}$ Hence show that $\int_{0}^{\infty} \frac{\sin x-x \cos x}{x^{3}} d x=\frac{\pi}{4}$.	[L1][CO6]	[12M]
	a) Find the Fourier transform of $\mathrm{f}(\mathrm{x})=. e^{-\frac{x^{2}}{2}},-\infty<x<\infty$	[L1][CO6]	[6M]
4	b) If $\mathrm{F}(\mathrm{p})$ is the complex Fourier transform of $\mathrm{f}(\mathrm{x})$, then prove that the complex Fourier transform of $\mathrm{f}(\mathrm{x})=\cos a x$ is $\frac{1}{2}[F(p+a)+F(p-a)]$	[L5][CO6]	[6M]
5	a) Write the formula for Fourier cosine transform	[L1][CO6]	[2M]
	b) Find the Fourier cosine transform of $\mathrm{f}(\mathrm{x})$ defined by $f(x)=\left\{\begin{array}{cc} \cos x & ; 0<x<a \\ 0 & ; x \geq a \end{array}\right.$	[L1][CO6]	[4M]
	c) If $\mathrm{F}(\mathrm{P})$ is the complex Fourier transform of $\mathrm{f}(\mathrm{x})$, then prove that the complex Fourier transform of $F\{f(x-a)\}=e^{i p a} . F(P)$	[L5][CO6]	[6M]
6	Find the Fourier sine and cosine transforms of $\mathrm{f}(\mathrm{x})=\frac{e^{-a x}}{x}$ and deduce that $\int_{0}^{\infty} \frac{e^{-a x}-e^{-b x}}{x} \sin p x d x=\tan ^{-1}\left(\frac{p}{a}\right)-\tan ^{-1}\left(\frac{\tilde{p}}{b}\right) .$	[L1][CO6]	[12M]
7	Find the Fourier sine and cosine transforms of $\mathrm{f}(\mathrm{x})=e^{-a x}, a>0$ and hence deduce the integrals (i) $\int_{0}^{\infty} \frac{p \sin p x}{a^{2}+p^{2}} d p$ (ii) $\int_{0}^{\infty} \frac{\cos p x}{a^{2}+p^{2}} d p$	[L1][CO6]	[12M]
8	a) Prove that $\mathrm{F}\left[x^{n} \mathrm{f}(\mathrm{x})\right]=(-i)^{n} \frac{d^{n}}{d p^{n}}[F(p)]$	[L5][CO6]	[6M]
	b) Prove that $F_{s}\{\mathrm{xf}(\mathrm{x})\}=-\frac{d}{d p}\left[F_{c}(p)\right]$	[L5][CO6]	[6M]
	a) Find the Fourier cosine transform of $e^{-a x} \cos a x, a>0$	[L1][CO6]	[6M]

Q.P. Code: 20HS0834

| $\mathbf{9}$ | b) Find the Fourier cosine transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}x, \text { for } 0<x<1 \\ 2-x, \text { for } 1<x<2 \\ 0, \text { for } x>2\end{array}\right\}$ |
| :--- | :--- | :--- | :--- |\quad [L1][CO6] $[\mathbf{6 M]}]$| $\mathbf{1 0}$ | Find the finite Fourier sine and cosine transform of $\mathrm{f}(\mathrm{x})$
 defined by $f(x)=2 x$ where $0<x<2 \pi$. | [12M] |
| :--- | :--- | :--- |

Prepared by: Dept. of Mathematics

