

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR

(AUTONOMOUS)

 $Siddharth\,Nagar,Narayanavanam\,Road-517583$

QUESTION BANK (DESCRIPTIVE)

Subject with Code: NUMERICAL METHODS ANDTRANSFORMS (20HS0834) Year & Sem: II-B.Tech & I-Sem **Branches**: B.Tech-ECE **Regulation:** R20

UNIT –I

NUMERICAL SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS& INTERPOLATION

1	a) Define Algebraic equation and Transcendental equation.	[L1][CO2]	[4M]
	b) Find a positive root of the equation $x^3 - x - 1 = 0$ by Bisection method.	[L3][CO2]	[8M]
2	a)What is the algorithm for the bisection method.	[L1][CO2]	[4M]
	b) Find real root of the equation $3x = e^x$ by Bisection method.	[L3][CO1]	[8M]
3	a) Describe the formula for square root of a number by Newton – Raphson formula.	[L2][CO2]	[2M]
	b) Find out the square root of 25 given $x_0 = 2.0$, $x_1 = 7.0$ using Bisection method.	[L3][CO2]	[10M]
4	a) State Newton – Raphson formula for solution of polynomial and transcendental equations.	[L1][CO2]	[2M]
	b) Estimate a real root of the equation $xe^x - \cos x = 0$ by using Newton – Raphson method.	[L4][CO1]	[10M]
5	Using Newton-Raphson method (i) Find square root of 28 (ii) Find cube root of 15.	[L3][CO2]	[12M]
6	a) Using Newton-Raphson method, find reciprocal of 12.	[L3][CO2]	[6M]
	b) Find a real root of the equation $x tan x + 1 = 0$ using Newton – Raphson method.	[L3][CO1]	[6M]
7	a) Write formula for Regula-falsi method.	[L2][CO1]	[2M]
	b) Predict a real root of the equation $x e^{x} = 2$ by using Regula-falsi method.	[L2][CO1]	[10M]
8	Find the root of the equation $x \log_{10}(x) = 1.2$ using False position method.	[L3][CO1]	[12M]
9	a) Write the formula for Newton's forward interpolation.	[L1][CO1]	[2M]
	b) From the following table values of x and $y=tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$.		
	x 0.10 0.15 0.20 0.25 0.30	[L5][CO1]	[10M]
	y 0.1003 0.1511 0.2027 0.2553 0.3093		
10	a)Apply Newton's forward interpolation formula and the given table of values		
	x 1.1 1.3 1.5 1.7 1.9	[L3][CO1]	[6M]
	Obtain the value of $f(x)$ when $x = 1.4$		
	$1 \text{ Min the value of } f(\lambda) \text{ when } \lambda = 1.7.$		
	b) Use Newton's backward interpolation formula to find $f(32)$ given $f(25)=0.2707$, f(30)=0.3027, $f(35)=0.3386$, $f(40)=0.3794$.	[L3][CO1]	[6M]

UNIT –II

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS& NUMERICAL INTEGRATION

1	a) State Taylor's series formula for first order differential equation.	[L1][CO3]	[2M]
	b) Tabulate y(0.1) and y(0.2) using Taylor's series method given that $y^1 = y^2 + x$ and y(0) = 1	[L1][CO3]	[10M]
2	Evaluate by Taylor's series method, find an approximate value of y at x=0.1 and 0.2 for the D.E $y^{11} + xy = 0$; $y(0) = 1$, $y^1(0) = 1/2$.	[L5][CO3]	[12M]
3	a) Solve $y^1 = x + y$, given y (1)=0 find y(1.1) and y(1.2) by Taylor's series method.	[L3][CO3]	[6M]
	b) Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2)	[L3][CO3]	[6M]
4	a) State Euler's formula for differential equation.	[L1][CO3]	[2M]
	b)Using Euler's method, find an approximate value of y corresponding to $x = 0.2$ given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$ taking step size $h = 0.1$	[L3][CO3]	[10M]
5	Using modified Euler's method find $y(0.2)$ and $y(0.4)$, given $y^1 = y + e^x$, $y(0) = 0$	[L3][CO3]	[12M]
6	a) Solve by Euler's method $y' = y^2 + x$, $y(0)=1$ and find $y(0.1)$ and $y(0.2)$	[L3][CO3]	[6M]
	b) Using Runge – Kutta method of fourth order, compute $y(0.2)$ from $y^1 = xy y(0)=1$,taking h=0.2	[L3][CO3]	[6M]
7	Using R-K method of 4 th order, solve $\frac{dy}{dx} = x^2 - y$, y(0)=1. Find y(0.1) and y(0.2).	[L3][CO3]	[12M]
8	Using R-K method of 4 th order find y(0.1) and y(0.2) given that $\frac{dy}{dx} = x + y$, $y(0) = 1$.	[L3][CO3]	[12M]
9	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ by (i) By Trapezoidal rule and Simpson's $\frac{1}{3}$ rule. (ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.	[L5][CO3]	[12M]
10	a) Evaluate $\int_{0}^{4} e^{x} dx$ by Simpson's $\frac{3}{8}$ rule with 12 sub divisions.	[L5][CO3]	[6M]
	b) Evaluate $\int_0^{\pi/2} sinx dx$ using Trapezoidal rule, Simpson's $\frac{1}{3}$ rule and compare with exact value.	[L5][CO3]	[6M]

UNIT –III LAPLACE TRANSFORMS

	a) What is the Linear Property of Laplace Transform	[L1][CO4]	[2M]
1	b) Find the Laplace transform of $f(t) = e^{3t} - 2e^{-2t} + sin2t + cos3t + sinh3t - 2cosh4t + 9.$	[L3][CO4]	[4M]
	c) Find the Laplace transform of $f(t) = \cosh at \sin bt$	[L3][CO4]	[6M]
	a) Find the Laplace transform of $f(t) = \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^3$.	[L3][CO4]	[6M]
2	b) State First Shifting Theorem	[L1][CO4]	[2M]
	c) Find the Laplace transform of $e^{4t}sin2t cost$.	[L3][CO4]	[4M]
	a) State Change of Scale Property	[L1][CO4]	[2M]
3	b) Find the Laplace transform of $f(t) = cost.cos2t.cos3t$	[L3][CO4]	[6M]
	c) Find $L\{e^{-3t}sinh3t\}$	[L3][CO4]	[4 M]
	a) Find the Laplace transform of $t^2 e^{2t} \sin 3t$.	[L3][CO4]	[6M]
4	b) Find the Laplace transform of $\frac{1-\cos at}{t}$	[L3][CO4]	[6M]
	a) Find the Laplace transform of $\int_0^t e^{-t} \cos t dt$.	[L3][CO4]	[6M]
5	b) Find the Laplace transform of $e^{-4t} \int_0^t \frac{\sin 3t}{t} dt$.	[L3][CO4]	[6M]
	a) Show that $\int_0^\infty t^2 e^{-4t} \cdot \sin 2t dt = \frac{11}{500}$, Using Laplace transform.	[L1][CO4]	[6M]
6	b) Using Laplace transform, evaluate $\int_0^\infty \frac{\cos at - \cos bt}{t} dt$.	[L3][CO4]	[6M]
	a) Find $L^{-1}\left\{\frac{3s-2}{s^2-4s+20}\right\}$ by using first shifting theorem.	[L3][CO4]	[6M]
7	b) Find $L^{-1}\left\{\log\left(\frac{s-a}{s-b}\right)\right\}$	[L3][CO4]	[6M]
	a) State Convolution Theorem	[L1][CO4]	[2M]
8	b) Find $L^{-1}\left\{\frac{1}{(s^2+5^2)^2}\right\}$, using Convolution theorem.	[L3][CO4]	[4M]
	c) Find $L^{-1}\left\{\frac{s^2}{(s^2+4)(s^2+25)}\right\}$, using Convolution theorem.	[L3][CO4]	[6M]
9	a) Find the Inverse Laplace transform of $\frac{1}{s(s^2+a^2)}$	[L3][CO4]	[6M]
	b) Find $L^{-1}\left\{s \log\left(\frac{s-1}{s+1}\right)\right\}$	[L3][CO4]	[6M]

Q.P. Code: 20HS0834		R20	
10	a) Using Convolution theorem, Find $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$	[L3][CO4]	[6 M]
	b) Using Convolution theorem, Find $L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}$	[L3][CO4]	[6 M]

UNIT –IV APPLICATIONS OF LAPLACE TRANSFORMS&FOURIER SERIES

1	a) Using Laplace transform method to solve $y^1 - y = t$, $y(0) = 1$	[L3][CO5]	[6M]
	b) Solve the D.E. $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 3te^{-t}$ using Laplace Transform given that $x(0) = 4; \frac{dx}{dt} = 0. at, t = 0$	[L3][CO5]	[6M]
2	Using Laplace transform method to solve $y^{11} - 3y^1 + 2y = 4t + e^{3t}$ where $y(0) = 1, y^1(0) = 1$	[L6][CO5]	[12M]
3	a) Express Fourier Series with Coefficients in the interval $(0,2\pi)$.	[L2][CO5]	[2M]
	b) Obtain the Fourier series expansion of $f(x) = x^2$ in the interval $(0,2\pi)$.	[L3][CO5]	[4M]
	c) Obtain the Fourier series expansion of $f(x) = (x - x^2)$ in the interval $[-\pi, \pi]$. Hence show that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} = \frac{\pi^2}{12}$.	[L3][CO5]	[6M]
4	a) Obtain the Fourier series expansion of $f(x) = (\pi - x)^2$ in $0 < x < 2\pi$ and deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} = \frac{\pi^2}{6}$.	[L3][CO5]	[6M]
	b) Find the Fourier series for the function $f(x) = x$; in $-\pi < x < \pi$.	[L1][CO5]	[6M]
5	Find a Fourier series to represent the function $f(x) = e^x$ for $-\pi < x < \pi$ and hence derive a series for $\frac{\pi}{\sinh \pi}$.	[L1][CO5]	[12M]
6	Find the Fourier series to represent the function $f(x) = x^2$ for $-\pi < x < \pi$ and hence show that $(i)\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} = \frac{\pi^2}{12}$. $(ii)\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} = \frac{\pi^2}{6}$. $(iii)\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} = \frac{\pi^2}{8}$	[L1][CO5]	[12M]
7	a) If $f(x) = \sin x $, expand $f(x)$ as a Fourier series in the interval $(-\pi, \pi)$	[L2][CO5]	[6M]
	b) Write the formula for Half Range Fourier Cosine Series	[L1][CO5]	[2M]
	c) Find the half range cosine series for $f(x) = x$ in the interval $0 \le x \le \pi$.	[L1][CO5]	[4M]
8	Expand the function $f(x) = x $ in $-\pi < x < \pi$ as a Fourier series and deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} = \frac{\pi^2}{8}$	[L2][CO5]	[12M]
9	a) Expand $f(x) = e^{-x}$ as a fourier series in the interval (-1,1).	[L2][CO5]	[6M]
	b) Expand $f(x) = x $ as a fourier series in the interval (-2,2).	[L2][CO5]	[6M]

Q.P.	Code: 20HS0834	R20	
10	a) Write the formula for Half Range Fourier Sine Series	[L1][CO5]	[2M]
	b) Find the half range sine series expansion of $f(x) = x^2$ when $0 < x < 4$.	[L1][CO5]	[4M]
	c) Find the half range cosine series expansion of $f(x) = x(2 - x)$ in $0 \le x \le 2$.	[L1][CO5]	[6M]

UNIT –V FOURIER TRANSFORMS

	a) State Fourier integral theorem	[L1][CO6]	[2M]
1	b) Using Fourier integral theorem, Show that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\sum \sin x dx}{(x^2 + a^2)(x^2 + b^2)}$, $a, b > 0$	[L3][CO6]	[10M]
2	Find the Fourier transform of $f(x) = \begin{cases} 1; x < a \\ 0, x > a \end{cases}$ and hence evaluate i) $\int_{-\infty}^{\infty} \frac{sinap \ cospx}{p} dp$ ii) $\int_{-\infty}^{\infty} \frac{sinp}{p} dp$ iii) $\int_{0}^{\infty} \frac{sinp}{p} dp$.	[L1][CO6]	[12M]
3	Find the Fourier transform of f(x) = $\begin{cases} a^2 - x^2, x < a \\ 0, x > a > 0 \end{cases}$ Hence show that $\int_{0}^{\infty} \frac{\sin x - x \cos x}{x^3} dx = \frac{\pi}{4}.$	[L1][CO6]	[12M]
	a) Find the Fourier transform of $f(x) = .e^{-\frac{x^2}{2}}, -\infty < x < \infty$	[L1][CO6]	[6M]
4	b) If F(p) is the complex Fourier transform of f(x), then prove that the complex Fourier transform of $f(x) = cosax$ is $\frac{1}{2}[F(p+a) + F(p-a)]$	[L5][CO6]	[6M]
	a) Write the formula for Fourier cosine transform	[L1][CO6]	[2M]
5	b) Find the Fourier cosine transform of f(x) defined by $f(x) = \begin{cases} cosx & ; 0 < x < a \\ 0 & ; x \ge a \end{cases}$	[L1][CO6]	[4M]
	c) If F(P) is the complex Fourier transform of $f(x)$, then prove that the complex Fourier transform of $F{f(x-a)} = e^{ipa} \cdot F(P)$	[L5][CO6]	[6M]
6	Find the Fourier sine and cosine transforms of $f(x) = \frac{e^{-ax}}{x}$ and deduce that $\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \sin px dx = \tan^{-1}\left(\frac{p}{a}\right) - \tan^{-1}\left(\frac{p}{b}\right).$	[L1][CO6]	[12M]
7	Find the Fourier sine and cosine transforms of $f(x)=e^{-ax}$, $a > 0$ and hence deduce the integrals (i) $\int_0^\infty \frac{p \sin px}{a^2+p^2} dp$ (ii) $\int_0^\infty \frac{\cos px}{a^2+p^2} dp$	[L1][CO6]	[12M]
	a) Prove that $F[x^n f(x)] = (-i)^n \frac{d^n}{dp^n} [F(p)]$	[L5][CO6]	[6M]
8	b) Prove that $F_s\{ x f(x) \} = -\frac{d}{dp} [F_c(p)]$	[L5][CO6]	[6M]
	a) Find the Fourier cosine transform of $e^{-ax} \cos a x$, $a > 0$	[L1][CO6]	[6M]

Q.P.	Code: 20HS0834	R20	
9	b) Find the Fourier cosine transform of $f(x) = \begin{cases} x, for \ 0 < x < 1 \\ 2 - x, for \ 1 < x < 2 \\ 0, for \ x > 2 \end{cases}$	[L1][CO6]	[6M]
10	Find the finite Fourier sine and cosine transform of $f(x)$ defined by $f(x) = 2x$ where $0 < x < 2\pi$.	[L1][CO6]	[12M]

Prepared by: Dept. of Mathematics